
1.  INTRODUCTION

High order (p-version) finite element methods, character-
ized by the capability of exponential rate of convergence,
are gaining popularity in industry. The basic functions of p-
version finite elements, their convergence properties and
aspects of their computer implementation have received
extensive consideration in the literature (e.g.
[1,3,10,16,17,18]). However, the critical technical issues of
the appropriate geometric representation of p-version finite
elements for solving partial differential equations over gen-
eral three dimensional domains have not received adequate
consideration. This paper first demonstrates that the accu-
racy of finite element solutions is strongly influenced by
how well the geometry is approximated. Consideration is
then given to a set of procedures being developed for
proper generation of curved elements for p-version
analyses.

Section 2 outlines the advantages of p-version finite ele-
ments assuming the proper choice of meshing and mapping
procedures as required to preserve the superior rates of con-
vergence. Section 3 examines the role of the mesh
geometric approximation on the accuracy of the results
obtained in terms of a specific curved domain problem with
a known exact solution. This simple example clearly dem-
onstrates that the use of quadratic geometric
approximations for p-version finite elements does not lead
to satisfactory solution results, in the sense that using p-lev-

els greater than 3 or 4 will produce results that are affected
by the errors in mapping.

The requirements of Section 2 and results of Section 3
demonstrate the need for new mesh generation technolo-
gies to support p-version finite elements. Section 4
overviews current efforts on the development of such a
mesh generation capability. Central to this new approach is
the use of Bezier basis for the geometric representation of
the element shapes. This basis allows one to effectively
increase the order of geometric appropriation in an effi-
cient manner to any order desired. In addition, this basis
supports effective methods for the execution of key opera-
tions such as determining the validity of curved finite
elements and determining which mesh entities require
shape change to make an invalid element valid.

2. p-VERSION FINITE ELEMENT MESHES

A finite element mesh serves two purposes: First, to allow
representation of an arbitrary body by a collection of ele-
ments on which piecewise polynomial functions
(occasionally augmented by other functions) are defined,
and second, to control the error of approximation in terms
of the data of interest.

The error of approximation depends on the finite element
mesh and the polynomial degree of elements. In conven-
tional FEA codes, the polynomial degree of elements are
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fixed at 1 or 2, and the error is controlled by making suffi-
ciently fine meshes: The diameter of the largest element is
denoted by h. The errors of approximation are reduced as h
is reduced. The term h-version refers to this approach.
Since the mid-1980’s an alternative, known as the p-ver-
sion, matured sufficiently for use in professional practice.
In this approach the primary role of the mesh is to repre-
sent the topological and geometric description of the object
being modeled by a collection of elements and the error is
controlled by the polynomial degree of elements, denoted
by p. The error is reduced as p is increased. The p-version
has certain advantages, which include faster rates of con-
vergence and the ability to produce a sequence of solutions,
corresponding to increasing p, automatically and without
the need to alter the finite element mesh (so long as the
mesh provides a satisfactory geometric approximation to
the domain). This allows monitoring the convergence of the
data of interest and estimating the errors of approximation.
A large number of papers are available on this subject, see,
for example, references [1,10,11,12,13,14].

The p-version poses certain new requirements for meshing.
Since the size of elements is much larger than in the h-ver-
sion, it is essential to use advanced mapping procedures so
that the domain geometry is properly represented and inte-
grated. Various procedures have been developed and
implemented using special collocation points, known as the
Babuska points, in connection with blending function tech-
niques see, for example, references [2,7]. A typical finite
element mesh used in the p-version is shown in Figure 1.
The solution, representing the von Mises stress contours,
was obtained with StressCheck†.

The proper choice of the mesh topological and geometric
representation depends on the goals of computation. In
solid mechanics the goals of computation are: (a) to deter-
mine stiffness characteristics of a structure, including
natural frequencies; (b) to determine the strength character-
istics, including stress maxima and stress intensity factors,
and (c) to determine stability limits (buckling loads). In
stiffness and stability computations it is generally possible
to simplify meshing by omitting small features, such as fil-
lets, bosses, small holes, etc. In strength computations,

when the goal is to compute the maximal stress, it is neces-
sary to include fillets and all relevant features at least
within the region where the maximal stress is sought. This
is known as the region of primary interest. A frequent con-
ceptual error in finite element analysis is reporting stresses
in regions where the fillets and other small features were
omitted.

The error of approximation has two sources: the local error
and the pollution error. The pollution error, associated with
the region of secondary interest, is controlled by ensuring
that the error in the natural norm of the formulation, usu-
ally the energy norm, is sufficiently small. The local error,
associated with the region of primary interest, depends on
the local discretization (choice of mesh, mapping and the
polynomial degree). This error is most efficiently con-
trolled by the p-version of the finite element method.

3. INFLUENCE OF GEOMETRIC
APPROXIMATION

This section discusses the influence of geometric approxi-
mation on the solution accuracy of p-version finite element
method by using a benchmark two-dimensional elasticity
problem for which analytic expressions for the exact dis-
placement and stress field are known.

3.1 Model problem

An infinite plane weakened by an elliptical hole is
deformed by the application of uniform tensile stress in the
vertical direction at infinity as shown in Figure 2a. The rel-
evant geometric parameters are the major axis and

minor axis of the inner ellipse. These parameters are typ-

ically related to a third parameter, , as

, , (1)

where corresponds to a circle and is a
sharp crack.

Due to the double symmetry of the problem, only one quar-
ter of the sub-domain ABCDE needs to be investigated as
shown in Figure 2b. The exact stresses for the infinite
domain problem are known along edges BC and DC and
given by:

(2)

(3)

(4)

where and , and

are the stress components expressed in elliptical coor-

dinate system  [15].

The mapping between Cartesian coordinate system

and elliptical coordinate system  is

Figure 1. A typical finite element mesh in the p-version.

† StressCheck® is a trademark of Engineering Soft-
ware Research and Development, Inc., St. Louis,
Missouri
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, ,

Traction (Neumann) boundary conditions are applied on
edges BC and CD and symmetric Dirichlet boundary condi-
tions are imposed on edges DE and AB.

3.2 Maximum stress and strain energy

The maximum stress of this problem is concen-

trated at vertex A and is a function of ratio only,

being defined as . The finite element

stress is computed directly in this study by computing the
strains from the displacement solution then applying the
appropriate isotropic material stress-strain relationship.

Search for the maximum computed stress is con-

ducted over not only Gauss Quadrature points but also the
vertices of each element [12]. The relative error in maxi-
mum stress defined as

% (5)

is of great engineering interest.

The exact potential energy, , of the sub-domain
loaded by traction only without body force can be com-
puted as

(6)

=

Where and are normal and tangential trac-

tion components and displacement components
respectively [12]. The angle measured from the positive

axis to the normal of boundaries BC and CD are

, so Eq. (6) can be simplified as

(7)

where are stress tensor components and

are displacement components [4]. The exact potential
energy is obtained by numerically solving Eq. (7) to an
accuracy substantially greater that any of the finite element
solutions. The finite element potential energy is
computed by evaluating the product of load vector and
finite element solution over the boundary. The relative
error in energy norm is defined as

% (8)

3.3 Finite element meshes and geometric approxi-
mation shapes

A parameter is selected to construct the first test
model. An isotropic material with Young’s Module of 1.0
and Poisson’s ratio of is used under the assumption of
plane strain. The stress applied at the infinite boundary is
1.0. Table 1 provides the exact potential energy (to 7 digits
significant figures) and the exact stress.

The finite element method used for solving the problem
consists of a double discretization. First, a mesh is intro-
duced in order to discretize the geometrical domain. Then,
the solution function space is approximated by a finite
dimensional function space. Both geometrical and function
space approximations introduce discretizations errors into
the solution. In this work, we use polynomials for both dis-
cretizations where represents the polynomial order for

function space discretization and represents the polyno-
mial order for geometrical discretization.

The discretization error of the finite element method can be
written as the sum of two contributions:

(9)

where is the geometrical error and is the func-

Figure 2. Elliptical hole in an infinite plane under the
uniform tensile stress at infinity
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tional error. Studies of the convergence and accuracy of the
finite element method for domains where geometrical error,

, is identically zero or carefully controlled to be

small, thus allowing study of the functional error, ,

are common. We investigate the total error when the geo-

metrical discretization error, , contribution can be

significant. In this study a coarse mesh with only one edge
classified on the ellipse AE (see Figure 3) is used to per-
form the analysis and function polynomial orders from

to are used and geometric polynomial

orders from to are used. (A more com-
plete study including additional mesh configuration and
geometric approximation details is in preparation for publi-
cation [4])

For the mesh edge that is used to geometrically discretize
the ellipse, linear (q=1), quadratic (q=2), cubic (q=3) and
quartic (q=4) geometric approximations are selected. Two
different fitting methods are applied for the q>1 cases. The

first is a interpolant where the interpolating points are
equally spaced in the parametric space of the edge. The

second enforces continuity at the vertices A and E (see
[4] for specifics on the construction of those geometric
approximations). Close-ups of the geometric approxima-
tions in the vicinity of vertex A are shown in Figure 4.

3.4 Result analysis

Convergence curves for the relative error in energy norm
with respect to polynomial order for the various geomet-
ric approximation orders are shown in Figure 5. When
the polynomial order increases past the geometric approxi-
mation order, the error in mapping begins to dominate the
solution which is consistent with the basic theory [3]. The
discretization error approaches a limit as increases. This

limit is essentially the because for very high we

solve the PDE nearly exactly on an approximated geometri-
cal domain. The geometrical error is less when the

geometric approximation order increases.

The performance of the different geometric approxima-
tions on the norm of the maximum stress is a bit more
complex. Figure 6a shows the relative error in maximum
stress for the geometric approximations and Figure 6b

shows it for the geometric approximations. For

(which is ) the computed maximum stress is underesti-
mated at , but quickly increases past the exact value
to overestimate the exact value by relative error of 122% at

. Such behavior is expected since as increases
we are moving toward the solution of a problem with a
sharp corner at point A where the stress theoretically goes
to infinity. As is increased for the case the sharp-

(a) Linear mesh (b)  quartic mesh

Figure 3. Linear and quartic meshes

(a)  and  quadratic approximation shapes

Figure 4. Different geometric approximation shapes
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ness of the slope discontinuity at vertex A is decreased and
the stress results become more accurate. However, it is
interesting to note that in the case of the quadratic geo-
metric approximation the stress is overpredicted by 45%,
this is because the curved edge is not perpendicular to the
symmetry plane due to the error in mapping.

A comparison of the and geometric approxima-
tions cases indicates that they underestimate the exact value
for low order . In the case of the geometric approxi-
mations the stress becomes overestimated when

continues to increase. In the case of the geometric
approximations the stress is always underestimated for

and while the does slightly overesti-
mate the value for high . Figure 7 provides a more direct

comparison of the and cases for the various geo-
metric orders.

It should be noted that the geometric approximation error
for the quadratic geometric approximations, , at

are substantial with an overestimate of 45% for

the case and underestimate of 16% for the case.
The cubic geometric approximations, , yield a
smaller error at with an overestimate of 7.7% for

the case and underestimate of 5.0% for the case.
The quartic geometric approximations, , yield the
smallest error at with an overestimate of 2.8% for

the case and 0.29% for the case. These results are
consistent with those presented in reference [15] where the
ellipse geometry was approximated using a blending func-
tion method.

Although the results of geometric approximation shape
indicate that appropriate combination of and will
result in nearly 0% error for maximum stress such as

and , the theoretical
aspects of the optimal combination of is stilll unclear
and need further investigation. But it is important to notice
that conventional assumption of quadratic geometric
approximation for p-version finite element is not satisfied
when the element polynomial order .

4. CURVILINEAR MESH GENERATION

This section overviews the curvilinear mesh generation

(a) Relative error in energy norm for  shapes

(b) Relative error in energy norm for  shapes

Figure 5. Relative error in energy norm of different
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procedure which starts with an initial linear mesh. The cur-
rent development efforts are aimed at the effective
representation and definition of meshes consisting of mixed
geometric order elements as shown in Figure 8.

In the mesh curving procedure, all of the mesh entities clas-
sified on the curved model boundaries are put into a list

with the attachment of a proposed geometric shape com-
puted based either on interpolation or on approximation.
The process will traverse the list and deal with one entity
retrieved from it every step by checking the possibility to
move the mesh entity to its proposed shape. If such shape
movement does not cause any invalidities in the resulting
mesh, the entity will be removed from the list. Otherwise,
efforts involving geometric shape manipulation and local
mesh modification operations such as splitting, swapping
and collapsing are tried to eliminate the invalidities. The
procedure continues till the list is empty.

Key techniques in the mesh curving procedure are
• Mesh entity geometric shape representation
• Curved mesh entity validity determination and invalid-

ity correction
• Geometric shape optimization

The following subsections will discuss these issues.

4.1 Representing Mesh Shape

One approach to define the geometric shape of the mesh
entities is to assign the same geometry as the portion of the
model they classified on. However, the high computational
cost of this method makes it undesirable. The alternative is
to assign the mesh entity an appropriate geometric form.
Interpolants such as Lagrange polynomials and approxima-
tions such as Bezier polynomial are possibilities. In the
current work Bezier representations [5,6] are being used to
define the mesh geometry instead of the more standard
Lagrange interpolations due to the following properties of
Bezier polynomials:

• Convex Hull Property: A Bezier curve, surface, or vol-
ume is contained in the convex hull formed by its
control points.

• Variation Diminishing Property: An infinite plane can
not intersect a Bezier curve more times than it inter-
sects control polygon which allows more efficient
intersection calculations.

• All derivatives and products of Bezier functions are
easily computed Bezier functions.

• Computationally efficient algorithms for degree eleva-
tion and subdivision are available. These can be used
to refine the shape’s convex hull as well as adaptively
refine the mesh’s shape.

4.2 Determining Shape Validity

Previous implementations only tested the validity of mesh
regions at the integration sites that were to be used in per-
forming the analysis. Although this approach is sufficient
for analysis in which the element shape, order and integra-
tion rule are fixed, it suffers from the following drawbacks:

• If the analysis changes the integration rule then the
integration locations will change. As a result a region
that was considered valid may suddenly become
invalid. The only way to use this approach would be to
test each region with respect to all the possible inte-
gration sites which can be a large number of
evaluations when the polynomial order of the element
can be increased.

• The test itself does not provide insight on how the
region can be made valid either by changing the
region’s topology or its geometry.

(a) Convergence curve for

(b) Convergence curve for

Figure 7. Convergence curve for  and  shapes

Figure 8. Example of mesh entities composed of
different polynomial orders
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• The test only focused on mesh regions. If a mesh edge
or face were invalid (due to self-intersection) then all
regions using it as part of its boundaries would also be
invalid. Identifying and correcting these lower dimen-
sion mesh entities would effectively reduce the
number of invalid mesh regions that need to be
corrected.

A new approach that builds on the Bezier properties to test
the global validity of a mesh entity has been developed. In
the case of a Bezier tetrahedron volume, the Jacobian

of the geometric mapping  is

(10)

Where represents the natural coordinates of the element.

So the determinant of Jacobian  is computed as

(11)

, and are the three partial derivatives of

which are Bezier functions. Because product of Bezier
functions are also Bezier functions, the can be rep-
resented as a polynomial in Beizer form which is bounded
by its convex hull of control points. If all of the control
points of the are greater than zero then the region’s

must be greater than zero everywhere. The test
works for any polynomial order. An invalid tetrahedron
region determined by the above algorithm is shown in
Figure 9. Where the placement of control point causes

.

4.3 Correcting Invalid Mesh Entity

The validity test also provides information in the case of an
invalid shape in terms of possible modifications that can be
used to correct the shape. An invalid region can be cor-
rected by shape manipulation and/or local mesh
modifications using split, swap and collapse operations.

4.3.1 Correcting Invalidity by Shape Manipulation

Four possible solutions to correct the invalid region shown
in Figure 9 by shape manipulation are presented in
Figure 10 where the movement of control points , ,

and are to ensure that the third partial derivative

vector coming to the control point always lies in the

positive side of the plane defined by another two partial
derivative vectors which makes such that
the region becomes valid.

(a) An invalid Bezier tetrahedron region

Figure 9. Determination of invalid Bezier region
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Another example of shape manipulation is shown in
Figure 11. The top image shows four mesh faces made
invalid due to the curving of four mesh edges classified on
the circular hole. The center image is a close up of one of
the invalidities. One possible solution to this problem
would be to curve each of the faces’ remaining linear edges
in order to resolve the invalidities. The result of these shape
modifications are shown in the bottom image.

4.3.2 Correcting Invalidity by Curved Splitting

The split operation usually is chosen to fix an invalid
region that at least an angle formed by two partial deriva-

tive vectors at its vertex is bigger than , see
Figure 12(a). New mesh edge(s) must be introduced
through the vertex to refine the region in order to eliminate
the invalidity shown in Figure 12(b).

The Bezier split operation is implemented based on the
assumption that the original curved entity shape remains
unchanged up to any order in parametric space. The bene-
fits for applying split operation are

• No topological validity determination required
• The geometric shapes of the new created mesh enti-

ties are well formulated.

For example, when splitting a order Bezier mesh tetra-
hedron region at location , the control

points net of the new four regions can be computed as

, (12)

, (13)

where is volume coordinates and .

, , and

. , , and are corresponding

control points of original curved tetrahedron region.

Bezier edge and face split operations are the special cases
of region split where one or two parameters of are equal
to zero. Examples are shown in Figure 13.

Figure 11. The effect of curving mesh edges classified
on the planar face in order to correct the original

highlighted invalid mesh faces
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4.3.3 Correcting Invalidity by Curved Swapping and
Collapsing

Curved edge swap and collapse operations can increase the
space needed by the shape movement of the current curved
mesh entity from the list. They are practical useful when
the invalidities are caused by interferences, see Figure 14.

In swap and collapse operations, a curved polygon is cre-
ated after deleting all of the higher bounded mesh entities
connecting to the split and swap edge, see Figure 15 (a).
Usually the edge number of the curved polygon is bigger
than 4. There are two important issues affecting the opera-
tion application result,

• Appropriate topology configuration of the curved
polygon

• Shape construction of the new edge(s) and face(s)

For example, two possible configurations and shape con-
structions for Figure 15(a) are presented in Figure 15(b).
Both of them are topological and geometrical valid. How-
ever, solutions can not be similarly generalized in
parametric space as split operation and are still under inves-
tigation and development.

4.3.4 Shape Quality of Curved Mesh

One important piece needed for curvilinear mesh genera-
tion that is not yet resolved is the aspect of mesh quality
measures of curved mesh entities. Quality metrics are

(b) face split - create three new curved regions

(c) region split - create four new curved regions

(a) Curved edge swap

(b) Curved edge collapse

Figure 14. Curved edge swap and collapse

Figure 13. Bezier edge, face, region split operation

current curved edge new edge

current curved edge new edges

(a) Curved polygon created by edge swap

(b) Two valid configuration for the curved polygon

Figure 15. Configurations and shape construction of
edge swap

Curved polygon

Configuration 1

Configuration 2



important when choosing which mesh modification or con-
figuration to apply in order to correct an invalid mesh
shape. For example, another solution to the problem posed
in Figure 11 is to relocate the faces’ vertices opposite to
curved edges. The definition of quality metrics for curved
element should be guided to be directly related to the p-ver-
sion finite element solution accuracy. Some investigation
results of one example are presented below for the purpose
to demonstrate that different selection of metrics measure-
ment leads to different quality results and need carefully
consideration.

Two curved meshes based on the same geometry model are
presented in Figure 16. The first curvilinear mesh is cre-
ated based on the criteria to maximize the minimum
determinant of Jacobian of each region and the second
curved mesh is constructed just by interpolating geometry
model. Volume and normalized - which is defined

as the normalization of maximum distance variation
between the mesh entities and the geometry model bound-
ary they classified on to the longest diagonal edge length of
the model domain - are used to compare these two meshes.
Table 2 clearly shows that curved meshes (c) and (d) have
better approximation quality to the geometry model com-
paring than linear mesh. But the difference between curved
mesh (c) and (d) is small if volume is applied as the quality
measure metric. But the normalized for curved

mesh (d) is better than that of mesh (c).

4.4 Approximating the Model’s Boundary

Another important issue is how to best approximate the
model boundary. As previously discussed, the approxima-
tion error between the original geometric model and the
mesh can have a strong impact on the analysis. Currently
interpolation methods are used to “fit” the mesh boundary
to the model boundary at certain sample points on the
boundary; however, using traditional methods, such as
chord length interpolation [9], can cause undesirable
boundary artifacts. In polynomial surfaces that are beyond
quadratic. One of the major issues is to find appropriate
parametric locations for the interpolation points that are not
on the edges of a triangular surface. Optimization tech-
niques that improve the quality of the surface mesh by
reducing these artifacts need to be investigated. An exam-
ple is shown in Figure 17.

(a) geometry model

(b) Linear mesh

Figure 16. Different curvilinear meshes for the same
geometry

∆dmax

∆dmax

(c) curvilinear mesh by maximize the minimum determi-
nant of Jacobian of each region

(d) curvilinear mesh by geometry interpolation

Table 2: Shape quality comparison

Volume

Model 3.5412E-04

Linear Mesh 3.7402E-04 8.65976%

Mesh (a) 3.5821E-04 2.93822%

Mesh (b) 3.5715E-04 0.19668%

Figure 16. Different curvilinear meshes for the same
geometry

∆dmax



Both meshes use the same edge interpolation points. How-
ever, the top image shows that the isoparametric lines
through the common edge is really unsmooth. In the bot-
tom image the isoparametric lines change smoothly after
the optimization of face interpolation points.

As previously mentioned, in addition to basic interpolation
approaches, constraints such as the order of geometric con-
tinuity between mesh entities need to be taken into
consideration when meshing the boundary.

4.5 Preliminary Results

Figure 18 shows the result of generating a curved mesh of
maximum polynomial degree q = 3 from a linear mesh. The
boundary mesh entities’ shapes have been optimized to
reduce undesirable artifacts. Figure 19 shows a more com-
plex example of curve mesh generation as well as the
impact raising the polynomial degree on the boundary
mesh. Double curvatures are clear shown in the cubic Bez-
ier mesh to better approximate the geometry model.

Figure 20 shows the application of quadratic curving on
models supplied by ESRD. Figure 21 shows a cubic curved
mesh which involves shape manipulation and curved col-
lapse operation to resolve the invalidities. The initial linear
meshes show the desired coarseness of the meshes.

5. CLOSING REMARK

The p-version finite element method provides an effective
method to apply simulation technologies in engineering
design. However, as this paper has pointed out, the applica-
tion of these methods requires the careful construction of
the meshes and control of their geometric approximation to
curved domains. The brief introduction to the methods cur-
rently under development to support p-version mesh
generation indicate the need to address a number of issues
that do not need to be considered when low order finite ele-

ments are to be used.
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Figure 17. Comparison of non-optimized mesh faces
with optimized mesh faces

Optimized

Non-Optimmized

Figure 18. The result of curving a straight sided mesh
classified on a sphere using a maximum polynomial

degree of 3

Figure 19. More complex curving example showing how
the polynomial degree affects the shape of the

highlighted mesh edge.
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Figure 20. The application of Simmetrix’s quadratic
curving tool on a model supplied by ESRD.

Figure 21. Example of a cubic curved mesh produced by
applying shape manipulation and collapse operation

Linear meshModel

Curved mesh after
shape manipulation

Curved mesh after
curved collapse


